Logic models to predict continuous outputs based on binary inputs with an application to personalized cancer therapy
نویسندگان
چکیده
Mining large datasets using machine learning approaches often leads to models that are hard to interpret and not amenable to the generation of hypotheses that can be experimentally tested. We present 'Logic Optimization for Binary Input to Continuous Output' (LOBICO), a computational approach that infers small and easily interpretable logic models of binary input features that explain a continuous output variable. Applying LOBICO to a large cancer cell line panel, we find that logic combinations of multiple mutations are more predictive of drug response than single gene predictors. Importantly, we show that the use of the continuous information leads to robust and more accurate logic models. LOBICO implements the ability to uncover logic models around predefined operating points in terms of sensitivity and specificity. As such, it represents an important step towards practical application of interpretable logic models.
منابع مشابه
Logic regression and its application in predicting diseases
Regression is one of the most important statistical tools in data analysis and study of the relationship between predictive variables and the response variable. in most issues, regression models and decision tress only can show the main effects of predictor variables on the response and considering interactions between variables does not exceed of two way and ultimately three-way, due to co...
متن کاملAPPLICATION OF ADAPTIVE NEURO FUZZY INFERENCE SYSTEM TO MODELING OXIDATIVE COUPLING OF METHANE REACTION AT ELEVATED PRESSURE
The oxidative coupling of methane (OCM) performance over Na-W-Mn/SiO2 at elevated pressures has been simulated by adaptive neuro fuzzy inference system (ANFIS) using reaction data gathered in an isothermal fixed bed microreactor. In the designed neuro fuzzy models, three important parameters such as methane to oxygen ratio, gas hourly space velocity (GHSV), and reaction temperature were conside...
متن کاملProduction planning considering undesirable outputs-A DEA
While the conventional DEA based production plans aim to minimize all the inputs consumption and maximize all the outputs production, there are many real world production systems may also generate undesirable by-products. One methodological difficulty associated with the previous DEA-based production planning models is how to incorporate undesirable factors in the planning models, while the sim...
متن کاملEfficiency evaluation of wheat farming: a network data envelopment analysis approach
Traditional data envelopment analysis (DEA) models deal with measurement of relative efficiency of decision making units (DMUs) in which multiple-inputs consumed to produce multiple-outputs. One of the drawbacks of these models is neglecting internal processes of each system, which may have intermediate products and/or independent inputs and/or outputs. In this paper some methods which are usab...
متن کاملApplication of the Genetic Algorithm to Calculate the Interaction Parameters for Multiphase and Multicomponent Systems
A method based on the Genetic Algorithm (GA) was developed to study the phase behavior of multicomponent and multiphase systems. Upon application of the GA to the thermodynamic models which are commonly used to study the VLE, VLLE and LLE phase equilibria, the physically meaningful values for the Binary Interaction Parameters (BIP) of the models were obtained. Using the method proposed in t...
متن کامل